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FOREWORD 
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unde r Contract NAS8 - 2 1 0 9 5 .  

The work was administered under the direction of the 

Aero-Astrodynamics Laboratory, NASA/MSFC, with Dr.  

George F. McDonough as Contracting Officer Representative. 
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SUMMARY 

This  report  descr ibes  a method of analysis and digital p rog ram fo r  

computing the modes and frequencies of a r b i t r a r y  l inear  space frames. 

Frame members  may be ei ther  uniform beams o r  Timoshenko beams with 

a rb i t r a r i l y  varying mass and stiffness propert ies .  

included for  rigid l inks,  lumped masses ,  Concentrated spr ings,  and other  

fea tures  useful in mathematically modeling complicated l inear  s t ruc ture  8 .  

Provis ion is a l so  

The program is applicable to many types of problems, including, for  

example, spacecraft  c lus t e r s  such a s  those current ly  planned for  the Apollo 

Applications P rogram,  and clustered vehicles such as Ti tan UI, Saturn  IB, 
and proposed modified Saturns.  

The p rogram is "automatic" in  the sense that communications - both 

Input data consists of minimum definitions input and output - a r e  concise. 

of par t icular  problems (e.g., joint positions, member  propert ies ,  res t ra in t  

conditions, etc .). 

including computer-generated plots of mode shapes.  

presented of solutions computed by the program. 

Output data contains complete s'olution information, 

Several  examples a r e  

The method upon which the program is based is applicable to  m o r e  

general  classes of finite-element s t ructures .  

i i i  



‘ I :  - 
I 

LMSC/HREC A784826 

I 
I 
I 
1 
I 
1 
I 
I 
I 
I 
8 
1 
I 
I 
I 
I 
I 

CONTENTS 

Section 

1 

2 

3 

4 

5 

6 

7 

FOREWORD 

SUMMARY 

INTRODUCTION 

DEFINITIONS 

2.1 Coordinate Systems 

2.2 Member Displacement Functions 

2.3 Member Energies  

COEFFICIENTS O F  WHOLE-STRUCTURE DISPLACE- 
MENT FUNCTIONS AS GENERALIZED COORDINATES 

A PROCEDURE FOR OBTAINING A SEQUENCE O F  
IMPROVED DISPLACEMENT FUNCTIONS 

INITIAL APPROXIMATIONS OF SYSTEM MODES 

5.1 General 

5.2 Joint Motions as Generalized Coordinates 

RESULTS 

6.1 P r o g r a m  Description 

6.2 Examples 

REFERENCES 

iv 

Page 

ii 

iii 

1-1 

2- 1 

2- 1 

2- 3 

2-4 

3- 1 

4- 1 

5-1 

5- 1 

5-6  

6-1 
6- 1 

6-7 

7 - 1  



LMSC/HREC A784826 

Section 1 

INTRODUCTION 

References 1, 2,4, 5,6 and 8 discuss studies of the modal charac te r i s t ics  

and, in some cases ,  the dynamic response of complicated l inear s t ruc tures .  

The same general  method was used i n  each of these studies. Essentially,  it 

is  as follows: 

0 The s t ructure  i s  modeled as  an assemblage of several  inter-  
connected pieces. Each piece may be a relatively complicated 
s t ruc ture  modeled by finite element methods, etc.  

The state of the s t ructure  is represented by a relatively small  
number of generalized coordinates, typically including: 

1. The displacement and/or rotation components of the boundary 

2. The coefficients of displacement functions representing the 

0 

points o r  surfaces  interconnecting the pieces.  

deformations of individual pieces.  
functions a r e  used, including: 

a.  F r e e  vibrational mode shapes corresponding to particular 

b. Displacement fields associated with particular static loadings. 

Various displacement 

boundary conditions for individual pieces.  

Severa l  such functions a r e  usually employed for  each piece. 
They may  be determined in various ways; e.g., closed-form solu- 
tion, finite element methods, static and dynamic t e s t s ,  etc.  

The kinetic and potential energies of the s t ructure  a r e  evaluated 
as quadratic fo rms  in the generalized coordinates: 

0 

Provided the elements of M and K a r e  constant, Lagrange's 
equation gives : 

M 6 t K Q  = F. 

In the absence of dissipative effects and active externally- 
applied forces ,  the generalized force  vector F is zero ,  and 
solution vectors of the form Q = s inu t  X yield the l inear ,  

1-1 
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2 small-vibration eigenprohlem, o M X  - K X  = 0. 

Several  well-known numerical methods may  be used 
precise  solutions to equations of this type, provided 
are  not poorly conditioned o r  of high o rde r .  

to compute 
M and K 

The procedure outlined above may  be viewed a s  a generalized Rayleigh-Ritz 

technique. 

results reported in References 4 and 8, very accurate  resul ts  may  be obtained 

in this way, provided the displacement functions are  well-selected.  However, 

substantial "restraint" e r r o r s  may result i f  the displacement functions a r e  not 

well-chosen, as i l lustrated by the example given in  Section 6 .5  of Reference 4. 

As indicated by the excellent comparisons with experimental  

>;c 

Relative to finite element o r  finite difference methods (as usually applied), 

this procedure affords a substantial reduction in eigenproblem o rde r ;  however, 

the o rde r  m a y  still be moderately large for complicated s t ruc tures .  

example, the Saturn V analysis described in  Reference 8 involved the solution 

of a 147 degree-of-freedom eigenproblem. 

well-conditioned eigenproblems this s ize  o r  l a r g e r  may  be computed by using 

existing methods:* practical  difficulties (principally involving the interrelated 

fac tors  of numerical  accuracy,  computer execution t ime, machine storage 

capacity, complexity of method, etc.) sharply r a i se  cos ts  of solution as the 

number of degrees  of f reedom is increased. 

F o r  

Although accurate  solutions of 

* 
A good choice of displacement functions is equally, i f  not m o r e ,  important 
in forced vibration analysis;  in which case function selection must  be based 
not only upon the sys tem boundary conditions but upon the charac te r  of the 
externally applied forces  a s  well. If coefficients of f r ee  vibration modes of 
the en t i re  sys tem a r e  being used as  coordinates in a response analysis,  it may 
under some conditions be highly desirable to  use "mixed" modes (that is 
modes corresponding to severa l  different sys tem boundary conditions, e.g., 
for  a beam-like s t ruc ture ,  some free-free modes and some cantilever modes).  
The fact  that such functions are not orthogonal usually adds only slightly to 
the complexity of the analysis,  while significant opportunities are often 
afforded fo r  improving the accuracy obtainable with a given number of 
degrees  of freedom. ** 
See e.g., Reference 7 (Wilkinson). 

1-2 
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This report  presents  a modified vers ion of the previously outlined 

procedure which is applicable t o  the general  l inear  f rame modes-and- 

f r cquencie s problem. 

reduced through the  use of whole-structure deformation functions. 

tion, a method is described for determining a sequence of improved dis-  

placement functions leading to nominally small e r r o r s  in the solutions. 

general  purpose digital p rogram was developed t o  implement this formulation 

fo r  a rb i t r a ry  l inear space frames. 

Degree - oi - f re  edom r cqui r erne nt s a r e  subs tantially 

In addi- 

A 

The program includes provision f o r :  

0 non-uniform beams,  

e 

0 

rigid links offsetting member end points f rom joints, 

r igid,  pinned o r  elastic connections of member  end points to  
joints (o r  rigid l inks),  

automatic generation of a sequence of improved displacement 
functions, and 

additional lumped masses  a t  the joints.  

0 

e 

As res t ra in t  conditions, an a rb i t ra ry  set  of joint motion components m a y  be 

se t  identically equal to zero.  

Fea tu res  cited above were  incorporated into the program pr imar i ly  to 

facilitate mathematical  modeling of unusual aerospace s t ruc tures  (such as 

the orbi ta l  workshop-cluster planned for  the Apollo Applications P rogram) .  

If the lowest N modes and frequencies of the s t ructure  a r e  required,  

the procedure executed by the program involves the solution of eigenproblems 

of o rde r  1 ,  2,  , . . . . . N . 
required,  only low-order,  very  well-conditioned eigenproblems a re  solved. 

Accordingly, if only low-frequency modes a r e  

The procedure implemented by the program to automatically compute 

successions of improved se ts  of displacement functions is  essentially a 

generalization of the well-known Stodola-Vianello i terative method. 

modal approximation is used to compute an equivalent static loading fo r  the 

en t i re  s t ruc ture  f r o m  which a new displacement function is calculated €or 

use in the succeeding approximation. 

Each  

The key to  the computational efficiency 

1 - 3  
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of the program is the ability of i ts  static analysis routines to economically 

compute displacement functions. Results obtained by the p rogram indicate 

that the techniques used arc well-suited for  extension to m o r e  general  types 

of finite-element s t ruc tures .  

Examples a r e  presented of solutions computed by the program. 

Elements generally consist of a "member" and two "rigid links", as 

shown on Figure 1.  

facilitate mathematical modeling of cer tain kinds of r ea l  joints. 

The rigid links a r e  included in the formulation to  

rigid 

3 

t 

link 

origin of mth member 

th frame 
terminus of m 

Ner ref e r enc e 

Primary Reference F rame  

Figure 1 - Typical Frame Element 

1-4 
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Section 2 

D E  FINITIONS 

2.1 COORDINATE SYSTEMS 

Part of a typical f r ame ,  consisting of an a r r a y  of "joints" inter-  

connected by "elements" is shown on Figure 2.  

sented geometrically a s  points, a r e  regarded a s  very  small rigid bodies 

into which the ends of elements a r e  rigidly embedded. 

Joints, which a r e  repre-  

f- 

Figure 2 - Typical Array  of Joints and Elements 

One of the end points of each member  is designated the member  

"origin;" the opposite end is  the member "terminus. 

( re la t ive to the a rb i t ra r i ly  selected "pr imary reference frame") 

and member  end points will be represented by the following symbols: 

Position coordinates * 
of joints 

XL = k-direction position coordinate of the lth joint. 

* This is a right-hand rectangular system. 

2- 1 
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Y? E k-direction position coordinate of the nth end point of the 
th m member  (n = 1 -+ origin; n. = 2 -, terminus) .  

As shown on Figure 1, a distinct ! 'member reference f rame"  is associated 

with each member .  

reference f r ame  a re  represented by the direction cosine matrix defined below. 

.b -r 
The orientations of these sys tems relative to the p r imary  

~ 

th Where R m i s  the cosine of -the angle between the i axis of the mth member  
A J  th 

reference frame and the j a x i s  of the p r imary  reference f r a m e  

The Dmn mat r ices  defined below represent  the rigid link offsets of 

member  end points f rom joints. 

and te rminus  of the mth member a r e  connected by rigid links to the - ith and 

i joints, respectively. 

It is  assumed in  this definition that the origin 

th 

r o  

r 
0 

m 2  j 
Dm2 E I -(Y3 - X 3 )  

(YYl - X,) i - ( Y 2  ml - x q  

0 

- ( Y y  - X i )  
O J  

m 2  

0 

1 ( Y Y 2  - xi, -(Y1 m2 - X i )  

* 
All of these a r e  right-hand rectangular sys tems.  

2-2  
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2.2 MEMBER DISPLACEMENT FUNCTIONS 

As il lustrated on Figure 3, the total direction-i  cross-sect ion 

displacement and rotation components 

(i = 1, 2, 3 ) ,  respectively. 

>;< 
of a member  are u. and $. 

1 1 

Cross  Section 
Rot a t  ion 
Components = {$1, $2, $3} 

Axis of 
Displacements = {ul,  u2, u3} 

1 

I8 
I /  

u3 

Deformed 
Member 

1 U 

Position of Member 
Origin before 
D e f o rma t ion 

/ 
/ 

Position of Member 
Terminus before 
De format  ion 

Figure 3 - Member in Deformed State 

* 
Member reference f r ame ;  right-hand rule for  rotations. 

2- 3 
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In the solution procedures described in  Sections 3,  4 and 5, inember 

deformations a r e  represented by l inear combinations of displacement 

functions. 

central  axis, and the n displacement function coefficients (the c ' s )  a r e  

l inearly related to  the generalized coordinates, 

That is ,  where s is  a position coordinate along the mth member ' s  

u. m ( s )  = 2 cy v p ) .  
1 

and j= 1 

Par t icu lar  displacement functions (the V I S  and 6 ' s )  and the associated 

generalized coordinates a r e  discussed in la te r  sections. 

2.3 MEMBER ENERGIES 

Where,  for the mth member, 

m 

m 
f l  ( s )  = m a s s  per  unit length, 

pi ( 9 )  = (effective) cross-sect ion m a s s  moment of iner t ia  

about the ith member axis ,  

th E I F  = bending stiffness about i axis, 

k. GAm = t ransverse  shear stiffness in  ith direction, 
1 

 EA^ = axial stiffness, 

G Jm = torsional stiffness, and 

' af f = -  
a s  ' 

2-4 
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the kinetic and potential energies of the member  are:  

length 

2 
tGJm(s)(q5y’)  t E A m ( s )  ( u y ’ f l d s  . 

Substitution of Equations ( 2 - 1 )  into (2-2) gives the energies  as quadratic 

f o r m s  in the displacement function coefficients: 

t . . . .  
m m’ 

+EAm(, )  [gcj v 33 . ( s ) ] ~ \ ~ B ;  (2- 3)  
j= 1 

2- 5 
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which may  be writ ten a s :  

and 

S ymme t r i c 
- 

Symmetric I 

b I  

. .  

. .  

. 

Mr n 

. -  
a m  

1 

2 

C 

G m  

* m  
'n - -  

where ,  for j = l  through n and I =  1 through n 

, 

2 -6 

(2-4) 
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Section 3 

COEFFICIENTS O F  WHOLE-STRUCTURE DISPLACEMENT 
FUNCTIONS AS GENERALIZED COORDINATES 

The following discussion deals with the use of whole-structure 
$k 

displacement functions corresponding to particular static loadings. 

u5e of such functions i s  practical  hecause of the availability of accurate  and 

economical digital programs for analyzing statically-loaded space f r a m e s  . 

The 

Consider,  for  example, the speciiic set  of displacement functions 

shown on Figure 4 .  (These particular functions have no special  significance; 

they w e r e  a rb i t ra r i ly  selected f o r  illustrative purposes .) We use  as general-  

ized coordinate s the four whole- s t ructure  displacement function coefficients 

q.  corresponding to the i l lustrated static loadings. The member  displacement 

function coefficients defined in Section 2.2 can be identified simply as follows: 
1 

c y  = q3, and 

cm = q 4 .  4 

Highly automated methods a re  available for  analyzing a r b i t r a r y  

statically-loaded space f r ames ;  accordingly, all of the member  displace- 

ment and rotation functions, v i j  and 6; associated with each q a r e  easi ly  

computed. 

m 
j 

Reference 3 presents  a general  formulation of l inear  static 

* 
whole-structure deformation function corresponds to a unique applied 

loading, of course.  This interpretation of the genesis of whole-structure 
deformation functions will,  however, prove convenient i n  subsequent 
discussions.  

3- 1 
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c - -  
\ 

I 
I ---- - \ I  c I 

I 
I 
I 
I 
I 

\ 

m rt;r 

\ 
I 
I 

- 7  
I 

/ 
/ 

Figure 4 - Example: Static Loadings Corresponding t o  Whole Structure  
Deformation Functions Associated with Four Generalized 
Coordinates, q q q and q4 1’ 2’ 3 
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.'. 
f rame analysis and descr ibes  a digital program"' which execates solutions to 

a wide c l a s s  of problems. After the VIS and 8 ' s  have been evaluated, the 

M m t s  and K m l s  of Equations (2-4) may be computed f r o m  Equation ( 2 - 5 ) .  9 J-p 
Where 

all m 

the energies  of the entire sys tem a re  

and 

all m 

- 
M1l M12 M13 M14 

Symmetric 
- 

K22 K23 I I K33 

Symmetric L 
K34 3 K44 

'13 :I 44 * 

(3 -3 )  

Instead of using Equations ( 2 - 5 )  and ( 3 - 2 )  to compute the K 

advantage can be taken of knowledge of the static had ing  distributions 

corresponding to the whole-structure deformation functions as follows: 

' s ,  
j a  

The distributed forces  and moments acting over the members  to 

compr ise  the static loading which will produce the whole-structure deforma- 

tion function associated with the generalized coordinate q will be r ep re -  

sented by the symbols &: and $" , respectively (m member ,  direction-i th j 
i j  

* 
This program is incorporated in  the dynamic analysis program discussed 
in  Section 6 .  

3- 3 
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in the member  reference f r a m e ) .  From external work considerations 

It will be convenient to re-write Equations ( 3 - 3 )  in compact f o r m  as:  

* 
2 T  = Q* M b ,  and 2 V  = Q K Q .  ( 3 - 5 )  

In the absence of dissipative effects and active externally applied forces ,  

Lagrange's equation is 

LJV d LJT 
dt a4, as i  t- = 0 .  -- ( 3 - 6 )  

.. 
Accordingly, M Q  t K Q  = 0,  and solutions of the fo rm Q = s i n o t X  yield 

the e ig enpr oblem, 

( 3 - 7 )  
2 

0 M X - K X  = 0. 

Several  well-known numerical methods a r e  suitable for  solving Equation 

( 3 - 7 ) ;  provided it is not of high order  nor poorly conditioned. 

example i l lustrated on Figure 4, the four solutions to Equation ( 3 - 7 )  would 

be approximately as follows (depending on the member  propert ies ,  e tc . ) :  

* 
F o r  the 

* 
Poorly conditioned mat r ices  a r e  frequently a consequence of poor mathe- 
mat ical  modeling; e.g. ,  representing a rigid connection by an elastic spring 
many o rde r s  of magnitude stiffer than the connected elements themselves.  

I 

3-4  
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X2 = second la teral  mode s 

x 3  

- 
x4 - 

= f i r s t  vertical  mode 

second vertical  mode 

S 

1 -:I - - 1  

, and 
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Scction 4 
REPETITIVE PROCEDURE FOR OBTAINING A SEQUENCE 

OF IMPROVED DISPLACEMENT FUNCTIONS 

In the following discussion, it is assumed that very  accurate  approxi- 

mations of the lowest N -  1 frequencies and mode shapes of the sys tem have 

already been determined, and that an init ial  approximation of the Nth mode 

is known. To calculate a precise  approximation of the Nth mode, a sequence 

of N-order eigenproblems of the type discussed in the preceeding section are 

solved. Each solution produces an improved approximation of the Nth mode. 

The first N - 1 whole-structure deformation functions used in  each of these 

solutions a r e  the previously-determined lowest N- 1 sys tem modes,  and the 

Nth function is the most  recently-obtained approximation of the Nth mode. 
th  The eigenvector associated with the highest-frequency solution of the I 

of these N-order  eigenproblems will be represented a s :  

* 

th The superscr ipt  (I) indicates that th i s  vector was obtained using the I 

approximation of the Nth mode (this notation will have the same meaning 

when used elsewhere in this section). Corresponding to this solution, the 

lth in te r im approximation of the Nth sys tem mode is comprised of the set 

* 
Initial approximations, which a r e  discussed in Section 5, may  be v e r y  
coa r se  and still not adversely affect the solution proce'ss. 

4- 1 



of member  cross-sect ion displacement and rotation functions defined below. 

j =  1 

F r o m  these in te r im functions, a set of distributed force and moment loadings 

of the members  a r e  computed a s  follows: 

Distributed force intensity 

Distributed moment intensity = (4- 2) 

The deformation of the s t ruc ture  corresponding to this static loading is the 

(1 t 1)- th  approximation of the Nth s y s t e m  mode. 

It is  interesting to note that since the f i r s t  N-1 whole-structure 

displacement functions a r e  the previously-calculated final approximations of 

the lower sys tem modes,  a l l  of the off-diagonal elements of M and K except 

those in the last column and row are extremely small compared with diagonal 

e lements  of the corresponding row and/or column. 

4-2 
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Section 5 

INITIAL APPROXIMATIONS O F  SYSTEM MODES 

5.1 GENERAL 

Initial approximations of system modes a r e  required f o r  the repetitive 

procedure outlined in Section 4 to  be executed. 

de scribed fo r  obtaining relatively accurate s cts of approximate solutions. 

However, recent experience with the digital program described l a t e r  in this 

repor t  indicates that generation and use of a set  of accurate  initial approxi- 

mations of the sys tem's  modes is not necessary;  nor ,  f rom the standpoint of 

computational efficiency, is it desirable. Instead, convergence of the repeti-  

tive process  previously described has been found to be so rapid that the same  

whole- s t ruc ture  displacement function - typically one associated with a s imple 

static loading of the s t ructure  - may se rve  quite well as the initial approxima- 

tion of each of the severa l  sys tem modes to be calculated. 

f r ame  example i l lustrated on Figure 4.  

s t ruc tura l  deformation corresponding to the static loading i l lustrated on 

Figure 5 a s  the initial approximation of the first mode, then the second, and 

so-on through the fourth sys tem mode. 

at successive s teps  in  the repetitive process  a r e  summarized in  Table 1 

(initial solutions in  the top row, f i rs t  improved solution in the next row, etc.). 

F igures  6 through 9 a r e  plots of the final approximations of the sys tem modes 

(corresponding to the last row of frequencies in Table 1). 

In Section 5.2, a method is 

Consider the plane- 

The s t ructure  was analyzed using the 

Frequency approximations obtained 

Table 1 

F r eque nc y Approximations 

1 st Mode 

7.0233337 
3.6164171 
3.5823153 
3.5820643 
3.5 8206 23 
3.5820624 
3.5820625 
3.5820625 

2nd Mode 

13.885242 
12.262470 
12.226653 
12.222883 
12.222252 
12.2221 37 
12.2221 15 
12.2221 11 

5-1 

3rd Mode 

33.96 3648 
21.322420 
19.024036 
18.659281 
18.526616 
18.469786 
18.445507 
18.435226 

4th Mode 

38.535649 
28.43521 4 
23.56 8244 
22.9495 70 
22.892897 
22.88 7886 
22.88 744 3 
22.887406 
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Al l  members a r e  tubes,  

Inside diameter = 1.0 in., 

Outside diameter = 1.5 in. 

.......... -.., : . .  ..... . .  
* * " ..- 

.. ............. 

rn f; 

100 in. 

100 in. 

m 

Figure 5 - Plane-Frame Example 
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5.2 JOINT MOTIONS AS GENERALIZED COORDINATES 

A method of obtaining a relatively accurate  set  of initial approxima- 

tions of sys t em modes in presented below. 

Section 6.1 contains routines for (optionally) executing this procedure; 

however, as pointed out in the preceeding discussion, the use of accurate  

init ial  approximations is generally unnecessary in  implementing the pro- 

cedure outlined in  Sections 3 and 4. 
normally bypassed for  economy of computer execution t ime. 

The digital p rogram described i n  

Accordingly, these routines are  

In the method outlined below, the generalized coordinates a r e  the 

displacement and rotation components of the joints. 

functions a r e  the quasi- static deformations associated with member  end 

motion. 

Member displacement 

Joint motion components (with respect  to the p r imary  reference f r a m e )  

will be  represented by the following symbols:  

Utk = direction-k displacement of the ith joint, 

th Uhk E direction-k rotation of the i joint. 

The motion components (with respect to the mth member  reference frame) 

of the end points (origin: n = 1, terminus: n = 2)  of the m th member  a r e :  - 
th 

G direction-k displacement of n end point, vY 
G direction-k rotation components. v2? 

The following abbreviated notation will be useful: 

5 -7 



1 
I 
I 
1 
II 
I 
I 
1 

F o r  j = 1 (displacements) and 

Also, 

~ 
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2 (rotations), 

- and Vmn - - 

Throughout the following discussion, it is assumed that the origin (n = 1) 

and terminus (n = 2) of the - mth member a r e  connected by rigid links to the 

- i a n d j  joints,  respectively. Accordingly, the R and D ma t r i ces  defined th th 

in  Section 2.1 may be used to express the l inearized relation between joint 

and member  end-point motion as follows: 

r i  _i:3 
In the above equations, and where used subsequently, C$ and I a r e  P 1 

Using the definitions, I x 1 z e r o  and identity ma t r i ces ,  respectively. 
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, 

Equations (5 -  1) may  be writ ten compactly a s :  

V m l  - - cml ui 

Vm2 - - Gm2u.j (5-2) 

th 
As discussed l a t e r ,  the kinetic and potential energies  of the m 

member  may  be expressed as quadratic forms  

components, That i s ,  

- 
Bml 1 

in its twelve end point motion 

Am22 
Am12 1 
Bm22 
Bm12 I 

lIq , and 

[=:I . (5-3) 

Using Equations (5-2) ,  TAA' and Vm may  be expressed in t e r m s  of the 

generalized coordinates as 

5-9 
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where 

and 

Accordingly, the kinetic and potential energies  of the en t i re  f rame may be  

writ ten as 

and 

where for a n  n-jointed frame, 

. -  
U1 

U2 

. 

Un 
I -  

T =  

v =  

, M E  

1 * *  - U  M C  2 

1 'k - U  K U ,  2 

- 
M12 

MZ2 . 
. 

. 

. 
Symmetr ic  Mnn - 
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K1 

K22 b 

Lsymrnet ric Knn - 
.. .. 

and the 6 x 6 submatr ices  MIJ and KIJ may be constructed by the following 

algorithm : 

. .  
0 First, s e t  a l l  of the Mijfs and KIJ1s identically equal to zero.  

0 For each member  in  the frame,  add t e r m s  to these mat r ices  
as follows, based on Equation (5-4): 

. .  
to Mjj , -m22 to  M", A -m12 to Mii, A -mll  add A 

. .  
to Kjj . -m22 to K1', and B -ml2 to  Kii, B -mll  B 

If some joint motion components a r e  set equal to ze ro  a s  res t ra in t  conditions, 

the corresponding elements of U and the associated rows and columns of 

M and K a r e  deleted. 

As before,  Lagrange 's  equation leads to  the undamped free-vibration 
2 eigenproblem, L, MX - K X  = 0, where U = s ino t  X. 

The formulation outlined above, which i s  essentially the one discussed in 

Section 1, gives excellent. approximate solutions to  many types of problems.  

I ts  p r i m a r y  shortcoming is that for  many-jointed f r ames ,  it requires  solu- 

t ion of high-order eigenproblems of the type (0 M - K ) X  = 0. 2 

Also, in  some applications it is possible that the quasi-s ta t ic  displace- 

ment functions may not give suitably accurate  resu l t s ;  and, although such 

" res t ra in t  e r r o r s "  may be reduced by introducing additional joints along 

m e m b e r s ,  addition of joints leads to high-order eigenproblems with the i r  

associated numerical  difficulties and high cost of solution. 
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F o r  par t icular  types of members ,  the Am and Bm mat r i ces  appearing 

In general ,  fo r  static displacement 

' s  (member  displace- 

in  Equations (5-  3) a r e  easi ly  evaluated. 

functions associated with member  end motion, the c 
ment function coefficients) defined in  Section 2.2 may be identified simply a s  

the end point motions, e .g . ,  

m 
j 

= direction- 1 displacement of member  origin, 

= direction-2 displacement of member  origin, 

v';?' c m  E 

c 2  = v12 

1 

m - ml 

0 

e 

m ml 

m - m 2  

C 6  = VZ3 = direction-3 rotation of member  origin,  
. .  

= direction- 1 displacement of member  te rminus ,  
c 7  = v l l  

m - m 2  
8 c = V12 = direction-2 displacement of member  te rminus ,  

e l 

c m  1 2  V E 2  = direction-3 rotation of member  te rminus .  

Then the coefficient mat r ices  appearing in Equation (2-4) may be interpreted as 

respectively,  and Equation (2-5) may be used to compute individual elements 

of these ma t r i ces .  

Each of the twelve se t s  of member displacement functions (vm and 

6 . .  f o r  the j = 1 through 12) is the deformation of the member  associated 

with a unit value of the corresponding end point motion, with the other 

i j  m 
1J 
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eleven end motion components identically zero .  

members ,  these displacement functions a r e  easi ly  identified. 

F o r  par t icular  types of I 
Consider for  example a straight,  uniform simple beam having two I 

I 
I 

planes of cross-sect ion symmetry.  

defined t o  lie on the section centroid, and the member  reference f r ame  axes 

a r e  oriented as indicated on Figure 10, the inter ior  deformation of the 

If the member origin and terminus a r e  

I 
I 
1 
I 
I 
1. 
1 Figure 10 - Prismatic Beam 

m e m b e r  iusing the notation introduced in  Section 2.1) i s :  I 
I where I = member  length, 

Bending in plane- 1 : 

u1 m ( 8 )  = v;1 t v g s  t- s 2 3  [;. (-v;1 t ve ' )  - +(zv;l: t v;2)] I 
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Bending in  plane-2: 

r 1 

L 1 

Axial extension: 

T o r s  ion: 

m l  

6 .  
v?: - v13 

B i- 

v g 2  - v g  
6 .  I + 

F o r  a simple beam, 

F r o m  the preceding equations, all of the member displacement 
m functions are easi ly  identified. 

placement associated with a unit value of Vml is 

For  example, v1 l ( s ) ,  the direction-1 dis-  

11 

Note that as a consequence of the syrnrnetry charac te r i s t ics  of the s imple 

beam, many of the displacement functions a r e  identically ze ro .  

of substituting the set  of relations of the type indicated by Equations (5-7)  

and (5-6) into Equations (2-5) is indicated below. 

is constant, C C .  

neglected. 

The resul t  

The mass pe r  unit length 

Rotary iner t ia  other than that associated with torsion is 

5-14 
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0 

156 0 0 0 221 

0 156 0 -221 0 

I 221 0 0 0 4P2 0 I 

1 156 0 0 0 -221 0 

0 156 0 221 0 0 

(-221 0 0 0 412 0 I 

0 

0 0 0 -138 

0 54 0 131 0 

I131 I 0 0 0 -31 2 0 1  I 

5-15 



I 
I .  
I 
1 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
1 

LMSC/HREC A784826 

- 
12 m - E12 
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0 
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- 
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l2 
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1 
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Y 
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I 
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RESULTS 

6.1 PROGRAM DESCRIPTION 
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A digital p r o g r a m  has been developed t o  implement the formulation 

It is coded entirely in described in the preceding sections of this report. 

For t ran  IV, and in its present  configuration requi res  approximately 26,000 
words of core  storage and five scratch files for  intermediate data storage. 

The p rogram requi res  as input data a minimum definition of the geom- 

etry,  boundary conditions, etc., together with control variables governing 

execution of various options. 

a r rangement  of the p r o g r a m  

Figures 11 and 12 i l lustrate  the general 

Members  may b e  either simple beams or Timoshenko beams with mass 

and stiffness propert ies  varying piecewise -l inearly along their  lengths. 

m a s s e s  may be attached to  the joints, and member  end connections to  joints 

(e i ther  directly o r  via rigid links as described in Section 2.1) may be pinned, 

rigid, o r  elastic. 

Rigid 

2 

Present  DIMNSION statements allow 

The routine used to  solve the (0 M - K ) X  = 0 eigenproblem is the 

one used  in References 4, 5, and 6 .  
solution of 60-th o rde r  systems. 

low-order,  well-conditioned eigenproblems of the type required to implement 

the procedure outlined in Section 4. 
only for  the lowest few sys t em modes, no m o r e  than a few seconds of computer 

execution t ime a r e  normally required by this  routine. 

These routines a r e  fast and accurate  for  

Since solutions a r e  usually computed 

The routines for  analyzing structural  deformation due to  static loading 

were  extracted f r o m  the Lockheed FRAME p r o g r a m  described in Reference 3. 
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Read data defining the geom- 
e t ry ,  ma te r i a l  p rope r t i e s ,  and 
r e s t r a i n t  conditions of the 

I f rame.  Also  read va r i ab le s  I 
I I controll ing p r o g r a m  options. 

L I 
4 

- 

Exccute calculations in p r e p -  
a ra t ion  for evaluation of 
s t r u c t u r a l  deformation under 
var ious s ta t ic  loading 
conditions , I 
I 

init ial  approximations 
of s y s t e m  modes t o  be 
computed on the b a s i s  

of specific s ta t ic  

Read s ta t ic  loading definitions, 
and compute the cor responding  
s t ruc tu ra l  deformations.  Store  
this  information on a s c r a t c h  
data file for  l a t e r  u se  a s  initial 
approximations of s y s t e m  
modes. Optionally p r in t  and 
plot descr ipt ions of t hese  
functions. - 

+ 

Compute p r e c  is  e approximations 
o f  cach of thc f i rs t  N modes as 
outlined 0 1 1  Figurc 12. 
ficcl in thc input. 

N is  spec i -  

Exit 

> approximat ions  
to  be computed using 

joint motions as  
general ized 

coordinate s 7 y 
Compute the s y s t e m  m a s s  and 
s t i f fness  m a t r i c e s  as  outlined 
in Section 5.2. Solve the 
cor responding  eigenproblem. 
P r i n t  and plot the r e su l t s  
(optionally). If any of these 
solutions a r e  t o  be used l a t e r  
as init ial  approximat ions  of 
s y s t e m  modes,  s t o r e  the r e -  
quired information on a s c r a t c h  
data file. 

Is  execution 
to  b e  te rmina ted  

a t  this  point? 

Exit 

Figure 11 - Flow Chart of Computer P r o g r a m  
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Retr ieve  f r o m  data f i les  the 
s e t  of m e m b e r  displacement  
functions to  be used a s  the 
init ial  approximation of the 
j - t h  mode of the system. 

.I 

Read f r o m  da ta  f i l e s  the s e t s  of 
me  mb e r displacement  functions ' 

compris ing the final approxi -  
mations of s y s t e m  modes 1 ,  2 ,  . . . , j -1 .  
approximation of the j - t h  s y s -  

Using the c u r r e n t  

- 1  

cients Mij a n d  Kij (for i = l ,  2 , .  . . , 
j) ,  a s  descr ibed  in  Section 4. 
Note tha t  a t  this point a l l  o ther  
e lements  of M and K have p r e -  
viously been computed (except 
for diagonal e lemcnts ,  they arc  
a l l  v e r y  n e a r l y  zero).  

I 

Store the c u r r e n t  (final)  
approxiniation of the j - th  
imodc in the data fi le con-  

data for s y s t e m  modes  1, 
2 , .  . . , j-1. 

taining the corresponding 

P r i n t  and plot 

convergence c r i te r ion  
satisfied ? 

Solve the j - o r d e r  eigenproblem, 
( a 2 M  - K) X = 0. 

Retr ieve d isp lacement  function 
data f rom skorage_files;  compute 
the s e t s  of v a n d  8 functions, 
then the and functions a s  
defined in Section 4, Compute 
the new approxinlation of the 
j - th  mode. Optionally, p r in t  
and plot t h i s  data. 

- 

, Figure 12 - Flow Chart of Repetitive Technique 
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1 
I 
1 
1 
1 
I 

The present  DIMENSION statements in these routines allow f r ames  having 

up to 180 non-constrained joint motion components. 

the program computes the s t ruc ture ' s  flexibility mat r ix  for la te r  use  in 

computing delormations under various loading conditions. 

t ime required for this step va r i e s  approximately a s  the square of the number 

of non-constrained joint motion components. 

is required to compute the flexibility mat r ix  of a space f rame having twenty 

joints. 

* 
Early in execution, 

The execution 

About one minute (IBM 7094) 

Deformations of individual members  a r e  analyzed, using one of the 

routines (NUB) developed originally for  u se  in the p rogram descr ibed in 

Reference 6. 
the one outlined in Reference 3 for  analysis of tapered beams)  r ep resen t s  

non-uniform beams a s  a sequence of shor t  uniform elements. 

ting functions used over the interior of the elements a r e  the displacement 

and cross -sec t ion  rotation functions associated with edge loading of the 

elements. 

The solution method used in this routine (which is essentially 

The interpola- 

The criteria presently used in the p rogram for terminating the sequence 

of improved modal approximations a r e :  either (1) a limiting number of 

approximations have been executed, o r  (2) the frequency change f r o m  one 

approximation to the next is smaller than a stated fraction of the cu r ren t  

frequency approximation. 

A ce r t a in  amount of numerical  e r r o r  will, of course,  be present  in a l l  

solutions. 

is explained below. 

One approach to  the identification of this e r r o r  in physical  t e r m s  

For  simplicity, abbreviated notation will be  used in 

* 
T 

The capacity of the p rogram may be increased substantially by replacing 
the static analysis  routines now used with a l a r g e  f r ame  analysis  routine, 
such a s  Lockheed's propr ie ta ry  FRAME-66 program which is applicable 
t o  f r ames  having many thousands of members .  
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discussing the la te ra l  motion of a simple beam in one of i ts  principal bending 

planes. (The symbols v 
and v , respectively.) 

and v ~ ’ ~ ’ ~  will be replaced by vn, a sp i j  i j ’  
-m 

n t l  

Suppose that associated with the nth in te r im approximation of a sys t em 

mode the la te ra l  motion of a member in one of its principal directions is 

computed as v ( s ) .  

evaluated : 

. .  n As the next step in the solution process  d-(s)  is 

2 $r= 0 pvn (6-1) 

where o is the cur ren t  frequency approximation. 

problem, 

Next, the static analysis 

is defined and vnel is computed. 

how vntl was obtained) that the motion of the f r ame  is such that 
Now, suppose (disregarding momentarily 

n+ 1 u = sinwt v 

The b e a m  equation is 

a4 EX - (u) = - j i  E 4 qit j  4 a s  

(6 - 3) 

(6  -4) 

where q is the externally applied distributed force function. Substitution 

of Equation (6-3) into Equation (6-4) gives: 

(6-5) 
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Substitution of Equations (6-2) and (6-1) into Equation (6-5) gives: 

n q( t )  = o2 p s inot  (v - vn+l) 

If the solution is exactly a f ree  vibration mode, q is identically zero;  

however, since some numerical e r r o r  i s  always present ,  a reasonable 

a s ses smen t  of the physical significance of the e r r o r  can be made by 

comparing the magnitude of q as indicated by Equation (6-6) with the 

corresponding inertia force [Equation (6-1)], since q i s  the external 

force which .would be necessary  to  cause the sys t em to actually execute 

the motion u = s i n o t v  . nf- 1 

2 The o MX - KX = 0 eigenproblems solved during the repetitive 

process  outlined in Section 4 have several  interesting properties.  

step in the repetitive process ,  it is necessary to  solve for only one mode 

and frequency (the highest one). Also, only the elements in the l a s t  row 

and column of M and K need be re-evaluated a t  successive s teps  in the 

repetitive process.  

during successive approximations of the jth mode a r e  accurate  approximations 

of sys t em modes,  a l l  of the off-diagonal elements of M and K a r e  near ly  

zero,  except for those in the l a s t  row and column. Furthermore,  in solving 

this eigenproblem the nth t ime, the (n- l ) th  approximation of the jth f r e -  

quency generally affords a close upper bound t o  new jth frequency approxi- 

mation. 

of computer execution t ime in calculating eigenproblem solutions. 

At each 

Since the f i rs t  j -1 generalized coordinates being used 

These special propert ies  afford significant opportunities for economy 

The repetitive solution procedure occasionally exhibits a cer ta in  

peculiar effect when solving f o r  higher modes,  especially i f  the s t ruc ture  

has  one o r  more  symmetry  planes, 

only a few repetitive steps t o  solve accurately for each of the f i r s t  five modes; 

For  example, the p r o g r a m  may require  

then obtain in  i t s  initial solution fo r  the sixth mode a good approximation of 

the seventh (or  higher) mode. In successive steps,  it may then converge to  

a prec ise  approximation of the seventh mode and subsequently require  a num- 

b e r  of additional repetitive solutions before the modal approximation begins 

t o  shift toward the lower mode. 
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I 6.2 EXAMPLES 

Three  examples a r e  presented to i l lustrate  the program's  capabilities. 

All of the mode shape plots shown on Figures  14 through 29 were  automatic- 

a l ly  generated by the program through the use of a Stromberg-Carlson 

4020 plotter.  

Example A,  i l lustrated on Figure 13, involves a planar s t ruc ture  

containing 34 joints and 49 members .  

s t ruc ture  we re computed using the repetitive technique discussed in  Section 

4. 
14, 15 and 16. 

The first th ree  planar modes of this 

Plots  of the final approximations of these modes a r e  shown on Figures  

The geometrical  f o r m  of Example B, i l lustrated on Figure 17, resembles  

approximately a Titan III launch vehicle. F o r  simplicity, uniform beam 

proper t ies  a r e  used in  this example; however, since provision is included for  

a rb i t r a r i l y  varying iner t ia  and stiffness propert ies ,  vibration charac te r i s t ics  

of vehicles of this type (o r  even more  complicated ones,  such a s  proposed 

Saturn IBIS with additional "strapped-on" solid propellant motors )  can be 

computed by the program. 

body modes)  of this s t ruc ture  are shown on Figures  18 through 23. 
the last of these is a tors ional  mode. 

joint motions as generalized coordinates, as described i n  Section 5.2. 
improved accuracy,  intermediate joints were  introduced at the mid-spans of 

each of the four beams. 

The f i r s t  s i x  f r ee - f r ee  modes (above the s ix  rigid- 

Note that 

These solutions were  computed using 

F o r  

In Example C,  i l lustrated on Figure 24, joint motions were  used as 

The s t ruc tures ' s  first four modes are  shown on generalized coordinates. 

F igures  25 through 29. Figure 29 shows the fourteenth mode. 
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Member  Types 

0 8WFl00 

@ 8WF40 

@ 10WF60 

@ 8WF67 

Figure  1 3  - Example A 
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Figure 15 
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Figure 16 
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Inside radius  = 18 in. \ 

I 

Outside Radius = 10 in. 
Inside Radius = 9 in. 

Hinged Connections 
(top and bottom) 

L 

___c 

\ 

100 f t  

Rigid A r m  , 

(top and bottom) L 
100 f t  
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